摘要翻譯:
在這篇論文中,我們提出了幾個對研究的原創(chuàng)性貢獻:-DG范疇及其不變量;-Neeman的良好生成(代數(shù))三角化范疇;-Fomin-Zelevinsky通過表示論的簇代數(shù)方法。
---
英文標題:
《Theorie homotopique des DG-categories》
---
作者:
Goncalo Tabuada
---
最新提交年份:
2007
---
分類信息:
一級分類:Mathematics 數(shù)學
二級分類:K-Theory and Homology K-理論與同調(diào)
分類描述:Algebraic and topological K-theory, relations with topology, commutative algebra, and operator algebras
代數(shù)和拓撲K-理論,與拓撲的關(guān)系,交換代數(shù)和算子代數(shù)
--
一級分類:Mathematics 數(shù)學
二級分類:Algebraic Geometry 代數(shù)幾何
分類描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代數(shù)簇,疊,束,格式,模空間,復幾何,量子上同調(diào)
--
---
英文摘要:
In this thesis we present several original contributions to the study of: - DG categories and their invariants; - Neeman's well-generated (algebraic) triangulated categories; - Fomin-Zelevinsky's cluster algebras approach via representation theory.
---
PDF鏈接:
https://arxiv.org/pdf/0710.4303