摘要翻譯:
利用Cartan-Kahler理論和實(shí)代數(shù)結(jié)構(gòu)的結(jié)果,我們證明了兩個(gè)嵌入定理。首先,光滑緊致3-流形的內(nèi)部可以等距嵌入到作為結(jié)合子流形的G2流形中。其次,光滑緊致4-流形K的內(nèi)部可等距嵌入作為Cayley子流形的自旋(7)-流形。同時(shí),我們還證明了關(guān)于光滑微分形式的實(shí)解析逼近的Bochner定理,可以用Akbulut和King發(fā)展的實(shí)代數(shù)工具得到。
---
英文標(biāo)題:
《Calibrated associative and Cayley embeddings》
---
作者:
Colleen Robles and Sema Salur
---
最新提交年份:
2009
---
分類(lèi)信息:
一級(jí)分類(lèi):Mathematics 數(shù)學(xué)
二級(jí)分類(lèi):Differential Geometry 微分幾何
分類(lèi)描述:Complex, contact, Riemannian, pseudo-Riemannian and Finsler geometry, relativity, gauge theory, global analysis
復(fù)形,接觸,黎曼,偽黎曼和Finsler幾何,相對(duì)論,規(guī)范理論,整體分析
--
一級(jí)分類(lèi):Mathematics 數(shù)學(xué)
二級(jí)分類(lèi):Algebraic Geometry 代數(shù)幾何
分類(lèi)描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代數(shù)簇,疊,束,格式,?臻g,復(fù)幾何,量子上同調(diào)
--
---
英文摘要:
Using the Cartan-Kahler theory, and results on real algebraic structures, we prove two embedding theorems. First, the interior of a smooth, compact 3-manifold may be isometrically embedded into a G_2-manifold as an associative submanifold. Second, the interior of a smooth, compact 4-manifold K, whose double has a trivial bundle of self-dual 2-forms, may be isometrically embedded into a Spin(7)-manifold as a Cayley submanifold. Along the way, we also show that Bochner's Theorem on real analytic approximation of smooth differential forms, can be obtained using real algebraic tools developed by Akbulut and King.
---
PDF鏈接:
https://arxiv.org/pdf/0708.1286