摘要翻譯:
我們給出了一階量子相變無序四舍五入為連續(xù)相變的啟發(fā)式論證。通過對一維n色量子Ashkin-Teller模型的弱無序和強無序分析,我們發(fā)現對于$n\geq3$,一階躍遷被舍入為連續(xù)躍遷,在有限參數區(qū),物理圖象與隨機橫場Ising模型相同。結果明顯不同于二維經典問題,其中重整化群流的歸宿是對應于n-解耦純伊辛模型的不動點。
---
英文標題:
《Rounding by disorder of first-order quantum phase transitions: emergence
of quantum critical points》
---
作者:
Pallab Goswami, David Schwab, Sudip Chakravarty
---
最新提交年份:
2008
---
分類信息:
一級分類:Physics 物理學
二級分類:Disordered Systems and Neural Networks 無序系統(tǒng)與神經網絡
分類描述:Glasses and spin glasses; properties of random, aperiodic and quasiperiodic systems; transport in disordered media; localization; phenomena mediated by defects and disorder; neural networks
眼鏡和旋轉眼鏡;隨機、非周期和準周期系統(tǒng)的性質;無序介質中的傳輸;本地化;由缺陷和無序介導的現象;神經網絡
--
一級分類:Physics 物理學
二級分類:Statistical Mechanics 統(tǒng)計力學
分類描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相變,熱力學,場論,非平衡現象,重整化群和標度,可積模型,湍流
--
---
英文摘要:
We give a heuristic argument for disorder rounding of a first order quantum phase transition into a continuous phase transition. From both weak and strong disorder analysis of the the N-color quantum Ashkin-Teller model in one spatial dimension, we find that for $N \geq 3$, the first order transition is rounded to a continuous transition and the physical picture is the same as the random transverse field Ising model for a limited parameter regime. The results are strikingly different from the corresponding classical problem in two dimensions where the fate of the renormalization group flows is a fixed point corresponding to N-decoupled pure Ising models.
---
PDF鏈接:
https://arxiv.org/pdf/708.2917