《Combining Alphas via Bounded Regression》
---
作者:
Zura Kakushadze
---
最新提交年份:
2015
---
英文摘要:
We give an explicit algorithm and source code for combining alpha streams via bounded regression. In practical applications typically there is insufficient history to compute a sample covariance matrix (SCM) for a large number of alphas. To compute alpha allocation weights, one then resorts to (weighted) regression over SCM principal components. Regression often produces alpha weights with insufficient diversification and/or skewed distribution against, e.g., turnover. This can be rectified by imposing bounds on alpha weights within the regression procedure. Bounded regression can also be applied to stock and other asset portfolio construction. We discuss illustrative examples.
---
中文摘要:
我們給出了通過(guò)有界回歸組合alpha流的顯式算法和源代碼。在實(shí)際應(yīng)用中,通常沒(méi)有足夠的歷史來(lái)計(jì)算大量字母的樣本協(xié)方差矩陣(SCM)。為了計(jì)算alpha分配權(quán)重,可以對(duì)SCM主成分進(jìn)行(加權(quán))回歸。回歸通常會(huì)產(chǎn)生阿爾法權(quán)重,其多樣性不足和/或分布不均,例如營(yíng)業(yè)額。這可以通過(guò)在回歸過(guò)程中對(duì)alpha權(quán)重施加限制來(lái)糾正。有界回歸也可以應(yīng)用于股票和其他資產(chǎn)組合的構(gòu)建。我們討論說(shuō)明性的例子。
---
分類(lèi)信息:
一級(jí)分類(lèi):Quantitative Finance 數(shù)量金融學(xué)
二級(jí)分類(lèi):Portfolio Management 項(xiàng)目組合管理
分類(lèi)描述:Security selection and optimization, capital allocation, investment strategies and performance measurement
證券選擇與優(yōu)化、資本配置、投資策略與績(jī)效評(píng)價(jià)
--
一級(jí)分類(lèi):Quantitative Finance 數(shù)量金融學(xué)
二級(jí)分類(lèi):Risk Management 風(fēng)險(xiǎn)管理
分類(lèi)描述:Measurement and management of financial risks in trading, banking, insurance, corporate and other applications
衡量和管理貿(mào)易、銀行、保險(xiǎn)、企業(yè)和其他應(yīng)用中的金融風(fēng)險(xiǎn)
--
---
PDF下載:
-->