《Asymptotic Filter Behavior for High-Frequency Expert Opinions in a
Market with Gaussian Drift》
---
作者:
Abdelali Gabih, Hakam Kondakji, Ralf Wunderlich
---
最新提交年份:
2020
---
英文摘要:
This paper investigates a financial market where stock returns depend on a hidden Gaussian mean reverting drift process. Information on the drift is obtained from returns and expert opinions in the form of noisy signals about the current state of the drift arriving at the jump times of a homogeneous Poisson process. Drift estimates are based on Kalman filter techniques and described by the conditional mean and covariance matrix of the drift given the observations. We study the filter asymptotics for increasing arrival intensity of expert opinions and prove that the conditional mean is a consistent drift estimator, it converges in the mean-square sense to the hidden drift. Thus, in the limit as the arrival intensity goes to infinity investors have full information about the drift.
---
中文摘要:
本文研究了一個(gè)股票收益率依賴于隱式高斯均值回復(fù)漂移過程的金融市場。關(guān)于漂移的信息是從返回值和專家意見中獲得的,這些信息是關(guān)于到達(dá)齊次泊松過程跳躍時(shí)間的漂移當(dāng)前狀態(tài)的噪聲信號。漂移估計(jì)基于卡爾曼濾波技術(shù),由給定觀測值漂移的條件均值和協(xié)方差矩陣描述。我們研究了增加專家意見到達(dá)強(qiáng)度的濾波器漸近性,證明了條件均值是一致漂移估計(jì)量,它在均方意義下收斂于隱藏漂移。因此,在到達(dá)強(qiáng)度達(dá)到無窮大的極限范圍內(nèi),投資者擁有關(guān)于漂移的全部信息。
---
分類信息:
一級分類:Quantitative Finance 數(shù)量金融學(xué)
二級分類:Mathematical Finance 數(shù)學(xué)金融學(xué)
分類描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的數(shù)學(xué)和分析方法,包括隨機(jī)、概率和泛函分析、代數(shù)、幾何和其他方法
--
一級分類:Quantitative Finance 數(shù)量金融學(xué)
二級分類:Portfolio Management 項(xiàng)目組合管理
分類描述:Security selection and optimization, capital allocation, investment strategies and performance measurement
證券選擇與優(yōu)化、資本配置、投資策略與績效評價(jià)
--
---
PDF下載:
-->