五月天婷亚洲天久久综合网,婷婷丁香五月激情亚洲综合,久久男人精品女人,麻豆91在线播放

  • <center id="8gusu"></center><rt id="8gusu"></rt>
    <menu id="8gusu"><small id="8gusu"></small></menu>
  • <dd id="8gusu"><s id="8gusu"></s></dd>
    樓主: dxystata
    2281 5

    [書籍介紹] 新書 Stata for the Behavioral Sciences [推廣有獎]

    • 48關(guān)注
    • 粉絲

    版主

    大師

    37%

    還不是VIP/貴賓

    -

    TA的文庫  其他...

    Software

    中英文Ebook

    R學(xué)習(xí)

    威望
    2
    論壇幣
    183930 個
    通用積分
    15267.9315
    學(xué)術(shù)水平
    208 點(diǎn)
    熱心指數(shù)
    271 點(diǎn)
    信用等級
    174 點(diǎn)
    經(jīng)驗(yàn)
    297870 點(diǎn)
    帖子
    5574
    精華
    1
    在線時間
    13610 小時
    注冊時間
    2006-6-21
    最后登錄
    2024-12-30

    初級學(xué)術(shù)勛章 初級熱心勛章 中級熱心勛章 初級信用勛章

    樓主
    dxystata 發(fā)表于 2015-9-17 13:37:36 |只看作者 |壇友微信交流群|倒序 |AI寫論文

    +2 論壇幣
    k人 參與回答

    經(jīng)管之家送您一份

    應(yīng)屆畢業(yè)生專屬福利!

    求職就業(yè)群
    趙安豆老師微信:zhaoandou666

    經(jīng)管之家聯(lián)合CDA

    送您一個全額獎學(xué)金名額~ !

    感謝您參與論壇問題回答

    經(jīng)管之家送您兩個論壇幣!

    +2 論壇幣


    二維碼

    掃碼加我 拉你入群

    請注明:姓名-公司-職位

    以便審核進(jìn)群資格,未注明則拒絕

    關(guān)鍵詞:behavioral Sciences Behavior Science Stata

    已有 1 人評分經(jīng)驗(yàn) 論壇幣 學(xué)術(shù)水平 熱心指數(shù) 信用等級 收起 理由
    hustchen2012 + 10 + 20 + 2 + 2 + 2 精彩帖子

    總評分: 經(jīng)驗(yàn) + 10  論壇幣 + 20  學(xué)術(shù)水平 + 2  熱心指數(shù) + 2  信用等級 + 2   查看全部評分

    沙發(fā)
    dxystata 發(fā)表于 2015-9-17 13:39:20 |只看作者 |壇友微信交流群
    Table of contents
    Acknowledgments
    List of tables
    List of figures
    Preface
    I Warming up
    1 Introduction
    1.1 Read me first!
    1.1.1 Downloading the example datasets and programs
    1.1.2 Other user-written programs
    The fre command
    The esttab command
    The extremes command
    1.2 Why use Stata?
    1.2.1 ANOVA
    1.2.2 Supercharging your ANOVA
    1.2.3 Stata is economical
    1.2.4 Statistical powerhouse
    1.2.5 Easy to learn
    1.2.6 Simple and powerful data management
    1.2.7 Access to user-written programs
    1.2.8 Point and click or commands: Your choice
    1.2.9 Powerful yet simple
    1.2.10 Access to Stata source code
    1.2.11 Online resources for learning Stata
    1.2.12 And yet there is more!
    1.3 Overview of the book
    1.3.1 Part I: Warming up
    1.3.2 Part II: Between-subjects ANOVA models
    1.3.3 Part III: Repeated measures and longitudinal models
    1.3.4 Part IV: Regression models
    1.3.5 Part V: Stata overview
    1.3.6 The GSS dataset
    1.3.7 Language used in the book
    1.3.8 Online resources for this book
    1.4 Recommended resources and books
    1.4.1 Getting started
    1.4.2 Data management in Stata
    1.4.3 Reproducing your results
    1.4.4 Recommended Stata Press books
    2 Descriptive statistics
    2.1 Chapter overview
    2.2 Using and describing the GSS dataset
    2.3 One-way tabulations
    2.4 Summary statistics
    2.5 Summary statistics by one group
    2.6 Two-way tabulations
    2.7 Cross-tabulations with summary statistics
    2.8 Closing thoughts
    3 Basic inferential statistics
    3.1 Chapter overview
    3.2 Two-sample t tests
    3.3 Paired sample t tests
    3.4 One-sample t tests
    3.5 Two-sample test of proportions
    3.6 One-sample test of proportions
    3.7 Chi-squared and Fisher's exact test
    3.8 Correlations
    3.9 Immediate commands
    3.9.1 Immediate test of two means
    3.9.2 Immediate test of one mean
    3.9.3 Immediate test of two proportions
    3.9.4 Immediate test of one proportion
    3.9.5 Immediate cross-tabulations
    3.10 Closing thoughts
    II Between-subjects ANOVA models
    4 One-way between-subjects ANOVA
    4.1 Chapter overview
    4.2 Comparing two groups using a t test
    4.3 Comparing two groups using ANOVA
    4.3.1 Computing effect sizes
    4.4 Comparing three groups using ANOVA
    4.4.1 Testing planned comparisons using contrast
    4.4.2 Computing effect sizes for planned comparisons
    4.5 Estimation commands and postestimation commands
    4.6 Interpreting confidence intervals
    4.7 Closing thoughts
    5 Contrasts for a one-way ANOVA
    5.1 Chapter overview
    5.2 Introducing contrasts
    5.2.1 Computing and graphing means
    5.2.2 Making contrasts among means
    5.2.3 Graphing contrasts
    5.2.4 Options with the margins and contrast commands
    5.2.5 Computing effect sizes for contrasts
    5.2.6 Summary
    5.3 Overview of contrast operators
    5.4 Compare each group against a reference group
    5.4.1 Selecting a specific contrast
    5.4.2 Selecting a different reference group
    5.4.3 Selecting a contrast and reference group
    5.5 Compare each group against the grand mean
    5.5.1 Selecting a specific contrast
    5.6 Compare adjacent means
    5.6.1 Reverse adjacent contrasts
    5.6.2 Selecting a specific contrast
    5.7 Comparing with the mean of subsequent and previous levels
    5.7.1 Comparing with the mean of previous levels
    5.7.2 Selecting a specific contrast
    5.8 Polynomial contrasts
    5.9 Custom contrasts
    5.10 Weighted contrasts
    5.11 Pairwise comparisons
    5.12 Closing thoughts
    6 Analysis of covariance
    6.1 Chapter overview
    6.2 Example 1: ANCOVA with an experiment using a pretest
    6.3 Example 2: Experiment using covariates
    6.4 Example 3: Observational data
    6.4.1 Model 1: No covariates
    6.4.2 Model 2: Demographics as covariates
    6.4.3 Model 3: Demographics, socializing as covariates
    6.4.4 Model 4: Demographics, socializing, health as covariates
    6.5 Some technical details about adjusted means
    6.5.1 Computing adjusted means: Method 1
    6.5.2 Computing adjusted means: Method 2
    6.5.3 Computing adjusted means: Method 3
    6.5.4 Differences between method 2 and method 3
    6.5.5 Adjusted means: Summary
    6.6 Closing thoughts
    7 Two-way factorial between-subjects ANOVA
    7.1 Chapter overview
    7.2 Two-by-two models: Example 1
    7.2.1 Simple effects
    7.2.2 Estimating the size of the interaction
    7.2.3 More about interaction
    7.2.4 Summary
    7.3 Two-by-three models
    7.3.1 Example 2
    Simple effects
    Simple contrasts
    Partial interaction
    Comparing optimism therapy with traditional therapy
    7.3.2 Example 3
    Simple effects
    Partial interactions
    7.3.3 Summary
    7.4 Three-by-three models: Example 4
    7.4.1 Simple effects
    7.4.2 Simple contrasts
    7.4.3 Partial interaction
    7.4.4 Interaction contrasts
    7.4.5 Summary
    7.5 Unbalanced designs
    7.6 Interpreting confidence intervals
    7.7 Closing thoughts
    8 Analysis of covariance with interactions
    8.1 Chapter overview
    8.2 Example 1: IV has two levels
    8.2.1 Question 1: Treatment by depression interaction
    8.2.2 Question 2: When is optimism therapy superior?
    8.2.3 Example 1: Summary
    8.3 Example 2: IV has three levels
    8.3.1 Questions 1a and 1b
    Question 1a
    Question 1b
    8.3.2 Questions 2a and 2b
    Question 2a
    Question 2b
    8.3.3 Overall interaction
    8.3.4 Example 2: Summary
    8.4 Closing thoughts
    9 Three-way between-subjects analysis of variance
    9.1 Chapter overview
    9.2 Two-by-two-by-two models
    9.2.1 Simple interactions by season
    9.2.2 Simple interactions by depression status
    9.2.3 Simple effects
    9.3 Two-by-two-by-three models
    9.3.1 Simple interactions by depression status
    9.3.2 Simple partial interaction by depression status
    9.3.3 Simple contrasts
    9.3.4 Partial interactions
    9.4 Three-by-three-by-three models and beyond
    9.4.1 Partial interactions and interaction contrasts
    9.4.2 Simple interactions
    9.4.3 Simple effects and simple contrasts
    9.5 Closing thoughts
    10 Supercharge your analysis of variance (via regression)
    10.1 Chapter overview
    10.2 Performing ANOVA tests via regression
    10.3 Supercharging your ANOVA
    10.3.1 Complex surveys
    10.3.2 Homogeneity of variance
    10.3.3 Robust regression
    10.3.4 Quantile regression
    10.4 Main effects with interactions: anova versus regress
    10.5 Closing thoughts
    11 Power analysis for analysis of variance and covariance
    11.1 Chapter overview
    11.2 Power analysis for a two-sample t test
    11.2.1 Example 1: Replicating a two-group comparison
    11.2.2 Example 2: Using standardized effect sizes
    11.2.3 Estimating effect sizes
    11.2.4 Example 3: Power for a medium effect
    11.2.5 Example 4: Power for a range of effect sizes
    11.2.6 Example 5: For a given N, compute the effect size
    11.2.7 Example 6: Compute effect sizes given unequal Ns
    11.3 Power analysis for one-way ANOVA
    11.3.1 Overview
    Hypothesis 1. Traditional therapy versus control
    Hypothesis 2: Optimism therapy versus control
    Hypothesis 3: Optimism therapy versus traditional therapy Summary of hypotheses
    11.3.2 Example 7: Testing hypotheses 1 and 2
    11.3.3 Example 8: Testing hypotheses 2 and 3
    11.3.4 Summary
    11.4 Power analysis for ANCOVA
    11.4.1 Example 9: Using pretest as a covariate
    11.4.2 Example 10: Using correlated variables as covariates
    11.5 Power analysis for two-way ANOVA
    11.5.1 Example 11: Replicating a two-by-two analysis
    11.5.2 Example 12: Standardized simple effects
    11.5.3 Example 13: Standardized interaction effect
    11.5.4 Summary: Power for two-way ANOVA
    11.6 Closing thoughts
    III Repeated measures and longitudinal designs
    12 Repeated measures designs
    12.1 Chapter overview
    12.2 Example 1: One-way within-subjects designs
    12.3 Example 2: Mixed design with two groups
    12.4 Example 3: Mixed design with three groups
    12.5 Comparing models with different residual covariance structures
    12.6 Example 1 revisited: Using compound symmetry
    12.7 Example 1 revisited again: Using small-sample methods
    12.8 An alternative analysis: ANCOVA
    12.9 Closing thoughts
    13 Longitudinal designs
    13.1 Chapter overview
    13.2 Example 1: Linear effect of time
    13.3 Example 2: Interacting time with a between-subjects IV
    13.4 Example 3: Piecewise modeling of time
    13.5 Example 4: Piecewise effects of time by a categorical predictor
    13.5.1 Baseline slopes
    13.5.2 Treatment slopes
    13.5.3 Jump at treatment
    13.5.4 Comparisons among groups at particular days
    13.5.5 Summary of example 4
    13.6 Closing thoughts
    IV Regression models
    14 Simple and multiple regression
    14.1 Chapter overview
    14.2 Simple linear regression
    14.2.1 Decoding the output
    14.2.2 Computing predicted means using the margins command
    14.2.3 Graphing predicted means using the marginsplot command
    14.3 Multiple regression
    14.3.1 Describing the predictors
    14.3.2 Running the multiple regression model
    14.3.3 Computing adjusted means using the margins command
    14.3.4 Describing the contribution of a predictor
    One-unit change
    Multiple-unit change
    Milestone change in units
    One SD change in predictor
    Partial and semipartial correlation
    14.4 Testing multiple coefficients
    14.4.1 Testing whether coefficients equal zero
    14.4.2 Testing the equality of coefficients
    14.4.3 Testing linear combinations of coefficients
    14.5 Closing thoughts
    15 More details about the regress command
    15.1 Chapter overview
    15.2 Regression options
    15.3 Redisplaying results
    15.4 Identifying the estimation sample
    15.5 Stored results
    15.6 Storing results
    15.7 Displaying results with the estimates table command
    15.8 Closing thoughts
    16 Presenting regression results
    16.1 Chapter overview
    16.2 Presenting a single model
    16.3 Presenting multiple models
    16.4 Creating regression tables using esttab
    16.4.1 Presenting a single model with esttab
    16.4.2 Presenting multiple models with esttab
    16.4.3 Exporting results to other file formats
    16.5 More commands for presenting regression results
    16.5.1 outreg
    16.5.2 outreg2
    16.5.3 xml_tab
    16.5.4 coefplot
    16.6 Closing thoughts
    17 Tools for model building
    17.1 Chapter overview
    17.2 Fitting multiple models on the same sample
    17.3 Nested models
    17.3.1 Example 1: A simple example
    17.3.2 Example 2: A more realistic example
    17.4 Stepwise models
    17.5 Closing thoughts
    18 Regression diagnostics
    18.1 Chapter overview
    18.2 Outliers
    18.2.1 Standardized residuals
    18.2.2 Studentized residuals, leverage, Cook's D
    18.2.3 Graphs of residuals, leverage, and Cook's D
    18.2.4 DFBETAs and avplots
    18.2.5 Running a regression with and without observations
    18.3 Nonlinearity
    18.3.1 Checking for nonlinearity graphically
    18.3.2 Using scatterplots to check for nonlinearity
    18.3.3 Checking for nonlinearity using residuals
    18.3.4 Checking for nonlinearity using a locally weighted smoother
    18.3.5 Graphing an outcome mean at each level of predictor
    18.3.6 Summary
    18.3.7 Checking for nonlinearity analytically
    Adding power terms
    Using factor variables
    18.4 Multicollinearity
    18.5 Homoskedasticity
    18.6 Normality of residuals
    18.7 Closing thoughts
    19 Power analysis for regression
    19.1 Chapter overview
    19.2 Power for simple regression
    19.3 Power for multiple regression
    19.4 Power for a nested multiple regression
    19.5 Closing thoughts
    V Stata overview
    20 Common features of estimation commands
    20.1 Chapter overview
    20.2 Common syntax
    20.3 Analysis using subsamples
    20.4 Robust standard errors
    20.5 Prefix commands
    20.5.1 The by: prefix
    20.5.2 The nestreg: prefix
    20.5.3 The stepwise: prefix
    20.5.4 The svy: prefix
    20.5.5 The mi estimate: prefix
    20.6 Setting confidence levels
    20.7 Postestimation commands
    20.8 Closing thoughts
    21 Postestimation commands
    21.1 Chapter overview
    21.2 The contrast command
    21.3 The margins command
    21.3.1 The at() option
    21.3.2 Margins with factor variables
    21.3.3 Margins with factor variables and the at() option
    21.3.4 The dydx() option
    21.4 The marginsplot command
    21.5 The pwcompare command
    21.6 Closing thoughts
    22 Stata data management commands
    22.1 Chapter overview
    22.2 Reading data into Stata
    22.2.1 Reading Stata datasets
    22.2.2 Reading Excel workbooks
    22.2.3 Reading comma-separated files
    22.2.4 Reading other file formats
    22.3 Saving data
    22.4 Labeling data
    22.4.1 Variable labels
    22.4.2 A looping trick
    22.4.3 Value labels
    22.5 Creating and recoding variables
    22.5.1 Creating new variables with generate
    22.5.2 Modifying existing variables with replace
    22.5.3 Extensions to generate egen
    22.5.4 Recode
    22.6 Keeping and dropping variables
    22.7 Keeping and dropping observations
    22.8 Combining datasets
    22.8.1 Appending datasets
    22.8.2 Merging datasets
    22.9 Reshaping datasets
    22.9.1 Reshaping datasets wide to long
    22.9.2 Reshaping datasets long to wide
    22.10 Closing thoughts
    23 Stata equivalents of common IBM SPSS Commands
    23.1 Chapter overview
    23.2 ADD FILES
    23.3 AGGREGATE
    23.4 ANOVA
    23.5 AUTORECODE
    23.6 CASESTOVARS
    23.7 COMPUTE
    23.8 CORRELATIONS
    23.9 CROSSTABS
    23.10 DATA LIST
    23.11 DELETE VARIABLES
    23.12 DESCRIPTIVES
    23.13 DISPLAY
    23.14 DOCUMENT
    23.15 FACTOR
    23.16 FILTER
    23.17 FORMATS
    23.18 FREQUENCIES
    23.19 GET FILE
    23.20 GET TRANSLATE
    23.21 LOGISTIC REGRESSION
    23.22 MATCH FILES
    23.23 MEANS
    23.24 MISSING VALUES
    23.25 MIXED
    23.26 MULTIPLE IMPUTATION
    23.27 NOMREG
    23.28 PLUM
    23.29 PROBIT
    23.30 RECODE
    23.31 RELIABILITY
    23.32 RENAME VARIABLES
    23.33 SAVE
    23.34 SELECT IF
    23.35 SAVE TRANSLATE
    23.36 SORT CASES
    23.37 SORT VARIABLES
    23.38 SUMMARIZE
    23.39 T-TEST
    23.40 VALUE LABELS
    23.41 VARIABLE LABELS
    23.42 VARSTOCASES
    23.43 Closing thoughts
    References
    Author index
    Subject index
    藤椅
    Alpha-one 發(fā)表于 2015-10-31 13:50:02 |只看作者 |壇友微信交流群
    敢問兄臺你有資源否?
    板凳
    kkwei 發(fā)表于 2015-11-1 09:55:12 |只看作者 |壇友微信交流群
    這是一本好書,看看什么時候可以拿到手!!
    報紙
    xge2000 發(fā)表于 2016-1-5 01:19:43 |只看作者 |壇友微信交流群
    it is goood book that we all need it now. waiting for coming.
    地板
    newfei188 發(fā)表于 2016-10-1 05:41:22 |只看作者 |壇友微信交流群
    when the book could be updata?
    您需要登錄后才可以回帖 登錄 | 我要注冊

    本版微信群
    加好友,備注jltj
    拉您入交流群

    京ICP備16021002-2號 京B2-20170662號 京公網(wǎng)安備 11010802022788號 論壇法律顧問:王進(jìn)律師 知識產(chǎn)權(quán)保護(hù)聲明   免責(zé)及隱私聲明

    GMT+8, 2025-1-1 14:19