公告:
原創(chuàng)首發(fā),持續(xù)更新,真2004版無雙
系手機掃描版本,速度很慢,掃描完一張就更新一張,沒有固定計劃,但保證更新完整。
提前發(fā)布,希望網(wǎng)友幫忙看看哪些掃描得不是很清楚,畢竟是手機掃的,有些頁面或者模糊嚴重,或者變形嚴重,請告知。
附件于后面樓層發(fā)布。書影先上圖。
Product Details
- Hardcover: 768 pages
- Publisher: Oxford University Press (October 16, 2003)
- Language: English
- ISBN-10: 0195123727
- ISBN-13: 978-0195123722
- Product Dimensions: 9.4 x 1.5 x 6.3 inches
Table of Contents
Preface
Data, Solutions, and Corrections
1. Regression Models
1.1.. Introduction
1.2.. Distributions, Densities, and Moments
1.3.. The Specification of Regression Models
1.4.. Matrix Algebra
1.5.. Method-of-Moments Estimation
1.6.. Notes onExercises
1.7.. Exercises
2. The Geometry of Linear Regression
2.1.. Introduction
2.2.. The Geometry of Vector Spaces
2.3.. The Geometry of OLS Estimation
2.4.. The Frisch-Waugh-Lowell Theorem
2.5.. Applications of the FWL Theorem
2.6.. Influential Observationsand Leverage
2.7.. Final Remarks
2.8.. Exercises
3. The Statistical Properties of Ordinary Least Squares
3.1.. Introduction
3.2.. Are OLS Parameter Estimators Unbiased?
3.3.. Are OLS Parameter Estimators Consistent?
3.4.. The Covariance Matrix of the OLS ParameterEstimates
3.5.. Efficiency of the OLS Estimator
3.6.. Residuals and Error Terms
3.7.. Misspecification of Linear Regression Models
3.8.. Measures of Goodness of Fit
3.9.. Final Remarks
3.10.. Exercises
4. Hypothesis Testing in Linear Regression Models
4.1..Introduction
4.2.. Basic Ideas
4.3.. Some Common Distractions
4.4.. Exact Tests in the Classical Normal Linear Model
4.5.. Large-Sample Tests in Linear Regression Models
4.6.. Simulation-Based Tests
4.7.. The Power of Hypothesis Tests
4.8.. Final Remarks
4.9..Exercises
5. Confidence Intervals
5.1.. Introduction
5.2.. Exact and Asymptotic Confidence Intervals
5.3.. Bootstrap Confidence Intervals
5.4.. Confidence Regions
5.5.. Heteroskedasticity-Consistent Covariance Matrices
5.6.. The Delta Method
5.7.. FinalRemarks
5.8.. Exercises
6. Nonlinear Regression
6.1.. Introduction
6.2.. Method-of-Moments Estimators for Nonlinear Models
6.3.. Nonlinear Least Squares
6.4.. Computing NLS Estimates
6.5.. The Gauss-Newton Regression
6.6.. One-Step Estimation
6.7..Hypothesis Testing
6.8.. Heteroskedasticity-Robust Tests
6.9.. Final Remarks
6.10.. Exercises
7. Generalized Least Squares and Related Topics
7.1.. Introduction
7.2.. The GLS Eliminator
7.3.. Computing GLS Estimates
7.4.. Feasible Generalized LeastSquares
7.5.. Heteroskedasticity
7.6.. Autoregressive and Moving-Average Processes
7.7.. Testing for Serial Correlation
7.8.. Estimating Models with Autoregressive Errors
7.9.. Specification Testing and Serial Correlation
7.10.. Models for Panel Data
7.11.. FinalRemarks
7.12.. Exercises
8. Instrumental Variables Estimation
8.1.. Introduction
8.2.. Correlation Between Error Terms and Regressors
8.3.. Instrumental Variables Estimation
8.4.. Finite-Sample Properties of IV Estimators
8.5.. Hypothesis Testing
8.6.. TestingOveridentifying Restrictions
8.7.. Durbin-Wu-Hausman Tests
8.8.. Bootstrap Tests
8.9.. IV Estimation of Nonlinear Models
8.10.. Final Remarks
8.11.. Exercises
9. The Generalized Methods of Moments
9.1.. Introduction
9.2.. GMM Estimators for Linear RegressionModels
9.3.. HAC Covariance Matrix Estimation
9.4.. Tests Based on the GMM Criterion Function
9.5.. GMM Estimators for Nonlinear Models
9.6.. The Method of Simulated Moments
9.7.. Final Remarks
9.8.. Exercises
10. The Method of Maximum Likelihood
10.1..Introduction
10.2.. Basic Concepts of Maximum Likelihood Estimation
10.3.. Asymptotic Propertied of ML Estimators
10.4.. The Covariance Matrix of the ML Estimator
10.5.. Hypothesis Testing
10.6.. The Asymptotic Theory of the Three Classical Tests
10.7.. ML Estimation ofModels with Autoregressive Errors
10.8.. Transformations of the Dependent Variable
10.9.. Final Remarks
10.10.. Exercises
11. Discrete and Limited Dependent Variables
11.1.. Introduction
11.2.. Binary Response Models: Estimation
11.3.. Binary Response Models:Inference
11.4.. Models for More than Two Discrete Responses
11.5.. Models for Count Data
11.6.. Models for Censored and Truncated Data
11.7.. Sample Selectivity
11.8.. Duration Models
11.9.. Final Remarks
11.10.. Exercises
12. Multivariate Models
12.1..Introduction
12.2.. Seemingly Unrelated Linear Regressions
12.3.. Systems of Nonlinear Regressions
12.4.. Linear Simultaneous Equations Models
12.5.. Maximum Likelihood Estimation
12.6.. Nonlinear Simultaneous Equations Models
12.7.. Final Remarks
12.8.. Appendix:Detailed Results on FIML and LIML
12.9.. Exercises
13. Methods for Stationary Time-Series Data
13.1.. Introduction
13.2.. Autoregressive and Moving-Average Processes
13.3.. Estimating AR, MA, and ARMA Models
13.4.. Single-Equation Dynamic Models
13.5..Seasonality
13.6.. Autoregressive Conditional Heteroskedasticity
13.7.. Vector Autoregression
13.8.. Final Remarks
13.9.. Exercises
14. Unit Roots and Cointegration
14.1.. Exercises
14.2.. Random Walks and Unit Roots
14.3.. Unit Root Tests
14.4.. SerialCorrelation and Unit Root Tests
14.5.. Cointegration
14.6.. Testing for Cointegration
14.7.. Final Remarks
14.8.. Exercises
15. Testing the Specification of Econometric Methods
15.1.. Introduction
15.2.. Specification Tests Based on ArtificialRegressions
15.3.. Nonnested Hypothesis Tests
15.4.. Model Selection Based on Information Criteria
15.5.. Nonparametric Estimation
15.6.. Final Remarks
15.7.. Appendix: Test Regressors in Artificial Regressions
15.8.. Exercises
References
Author Index
SubjectIndex