五月天婷亚洲天久久综合网,婷婷丁香五月激情亚洲综合,久久男人精品女人,麻豆91在线播放

  • <center id="8gusu"></center><rt id="8gusu"></rt>
    <menu id="8gusu"><small id="8gusu"></small></menu>
  • <dd id="8gusu"><s id="8gusu"></s></dd>
    樓主: songqiuhong
    10734 14

    [教材書籍] [高清:數(shù)學分析教材]A First Course in Mathematical Analysis [推廣有獎]

    • 0關注
    • 0粉絲

    講師

    18%

    還不是VIP/貴賓

    -

    威望
    0
    論壇幣
    10625 個
    通用積分
    14.1130
    學術水平
    14 點
    熱心指數(shù)
    19 點
    信用等級
    15 點
    經(jīng)驗
    26358 點
    帖子
    268
    精華
    0
    在線時間
    393 小時
    注冊時間
    2006-4-21
    最后登錄
    2024-12-11

    相似文件 換一批

    +2 論壇幣
    k人 參與回答

    經(jīng)管之家送您一份

    應屆畢業(yè)生專屬福利!

    求職就業(yè)群
    趙安豆老師微信:zhaoandou666

    經(jīng)管之家聯(lián)合CDA

    送您一個全額獎學金名額~ !

    感謝您參與論壇問題回答

    經(jīng)管之家送您兩個論壇幣!

    +2 論壇幣
    Title:A First Course in Mathematical Analysis
    Author:David Alexander Brannan
    Cambridge University Press,2006


         Mathematical Analysis (often called Advanced Calculus) is generally found by students to be one of their hardest courses in Mathematics. This text uses the so-called sequential approach to continuity, differentiability and integration to make it easier to understand the subject.
        Topics that are generally glossed over in the standard Calculus courses are given careful study here. For example, what exactly is a ‘continuous’ function? And how exactly can one give a careful definition of ‘integral’? This latter is often one of the mysterious points in a Calculus course – and it is quite tricky to give a rigorous treatment of integration!
       The text has a large number of diagrams and helpful margin notes, and uses many graded examples and exercises, often with complete solutions, to guide students through the tricky points. It is suitable for self study or use in parallel with a standard university course on the subject.

    Contents:
    1 Numbers 1
    1.1 Real numbers 2
    1.2 Inequalities 9
    1.3 Proving inequalities 14
    1.4 Least upper bounds and greatest lower bounds 22
    1.5 Manipulating real numbers 30
    1.6 Exercises 35
    2 Sequences 37
    2.1 Introducing sequences 38
    2.2 Null sequences 43
    2.3 Convergent sequences 52
    2.4 Divergent sequences 61
    2.5 The Monotone Convergence Theorem 68
    2.6 Exercises 79
    3 Series 83
    3.1 Introducing series 84
    3.2 Series with non-negative terms 92
    3.3 Series with positive and negative terms 103
    3.4 The exponential function x 7! ex 122
    3.5 Exercises 127
    4 Continuity 130
    4.1 Continuous functions 131
    4.2 Properties of continuous functions 143
    4.3 Inverse functions 151
    4.4 Defining exponential functions 161
    4.5 Exercises 164
    5 Limits and continuity 167
    5.1 Limits of functions 168
    5.2 Asymptotic behaviour of functions 176
    5.3 Limits of functions – using &quot; and  181
    5.4 Continuity – using &quot; and  193
    5.5 Uniform continuity 200
    5.6 Exercises 203
    6 Differentiation 205
    6.1 Differentiable functions 206
    6.2 Rules for differentiation 216
    6.3 Rolle’s Theorem 228
    6.4 The Mean Value Theorem 232
    6.5 L’Hoˆpital’s Rule 238
    6.6 The Blancmange function 244
    6.7 Exercises 252
    7 Integration 255
    7.1 The Riemann integral 256
    7.2 Properties of integrals 272
    7.3 Fundamental Theorem of Calculus 282
    7.4 Inequalities for integrals and their applications 288
    7.5 Stirling’s Formula for n! 303
    7.6 Exercises 309
    8 Power series 313
    8.1 Taylor polynomials 314
    8.2 Taylor’s Theorem 320
    8.3 Convergence of power series 329
    8.4 Manipulating power series 338
    8.5 Numerical estimates for p 346
    8.6 Exercises 350
    Appendix 1 Sets, functions and proofs 354
    Appendix 2 Standard derivatives and primitives 359
    Appendix 3  p 361
    Appendix 4 Solutions to the problems 363
    Chapter 1 363
    Chapter 2 371
    Chapter 3 382
    Chapter 4 393
    Chapter 5 402
    Chapter 6 413
    Chapter 7 426
    Chapter 8 443
    Index 457
    二維碼

    掃碼加我 拉你入群

    請注明:姓名-公司-職位

    以便審核進群資格,未注明則拒絕

    關鍵詞:Mathematical mathematica Mathematic Thematic Analysis understand University standard careful called

    A First Course in Mathematical Analysis.pdf

    3.77 MB

    需要: 5 個論壇幣  [購買]

    A First Course in Mathematical Analysis

    沙發(fā)
    lujingliang11 發(fā)表于 2010-6-14 12:39:13 |只看作者 |壇友微信交流群
    謝謝好東西啊
    藤椅
    hww1001156 發(fā)表于 2010-6-14 17:47:27 |只看作者 |壇友微信交流群
    收藏下下!。。!
    板凳
    zunguangg 發(fā)表于 2010-6-14 23:19:46 |只看作者 |壇友微信交流群
    下載了,保存,有時間再看
    報紙
    gssdzc 在職認證  發(fā)表于 2010-6-14 23:21:00 |只看作者 |壇友微信交流群
    非常感謝分享
    地板
    gft198810 發(fā)表于 2011-4-29 15:04:40 |只看作者 |壇友微信交流群
    下載了,保存,有時間再看
    灰常感謝
    7
    Yumia 發(fā)表于 2015-10-10 17:06:00 |只看作者 |壇友微信交流群
    老師推薦看的原價40個磅,能免費學習真是謝謝了
    8
    phdcs_2008 發(fā)表于 2017-3-19 17:25:02 |只看作者 |壇友微信交流群
    謝謝樓主分享。。。。!
    9
    caifacai 發(fā)表于 2017-3-19 17:58:52 |只看作者 |壇友微信交流群
    感謝分享好資源!
    10
    hylpy1 在職認證  發(fā)表于 2017-3-19 18:00:18 |只看作者 |壇友微信交流群
    A First Course in Mathematical Analysis by David Alexander Brannan,2006
    您需要登錄后才可以回帖 登錄 | 我要注冊

    本版微信群
    加JingGuanBbs
    拉您進交流群

    京ICP備16021002-2號 京B2-20170662號 京公網(wǎng)安備 11010802022788號 論壇法律顧問:王進律師 知識產(chǎn)權保護聲明   免責及隱私聲明

    GMT+8, 2024-12-23 03:27