摘要翻譯:
在非參數(shù)工具變量模型中恢復(fù)回歸函數(shù)的逆問題的不適定性導(dǎo)致估計量可能遭受非常慢的對數(shù)收斂速度。在本文中,我們證明了將問題限制在具有單調(diào)回歸函數(shù)和單調(diào)工具的模型上,顯著地削弱了問題的不適定性。與現(xiàn)有文獻形成鮮明對比的是,單調(diào)工具的存在意味著我們的不適定性測度在局限于單調(diào)函數(shù)空間時的有界性。在此基礎(chǔ)上,我們給出了約束估計的一個新的非漸近誤差界。對于給定的樣本量,只要回歸函數(shù)不太陡,其界與不適定性無關(guān)。作為一個蘊涵,這個界允許我們證明約束估計量在常數(shù)函數(shù)的一個大的但緩慢收縮的鄰域中以快速的多項式速度收斂,而與不適定性無關(guān)。我們的模擬研究表明,即使在回歸函數(shù)遠不是常數(shù)的情況下,施加單調(diào)性也能顯著地提高有限樣本的性能。我們將約束估計量應(yīng)用于從美國數(shù)據(jù)估計汽油需求函數(shù)的問題。
---
英文標(biāo)題:
《Nonparametric instrumental variable estimation under monotonicity》
---
作者:
Denis Chetverikov and Daniel Wilhelm
---
最新提交年份:
2015
---
分類信息:
一級分類:Statistics 統(tǒng)計學(xué)
二級分類:Applications 應(yīng)用程序
分類描述:Biology, Education, Epidemiology, Engineering, Environmental Sciences, Medical, Physical Sciences, Quality Control, Social Sciences
生物學(xué),教育學(xué),流行病學(xué),工程學(xué),環(huán)境科學(xué),醫(yī)學(xué),物理科學(xué),質(zhì)量控制,社會科學(xué)
--
一級分類:Economics 經(jīng)濟學(xué)
二級分類:Econometrics 計量經(jīng)濟學(xué)
分類描述:Econometric Theory, Micro-Econometrics, Macro-Econometrics, Empirical Content of Economic Relations discovered via New Methods, Methodological Aspects of the Application of Statistical Inference to Economic Data.
計量經(jīng)濟學(xué)理論,微觀計量經(jīng)濟學(xué),宏觀計量經(jīng)濟學(xué),通過新方法發(fā)現(xiàn)的經(jīng)濟關(guān)系的實證內(nèi)容,統(tǒng)計推論應(yīng)用于經(jīng)濟數(shù)據(jù)的方法論方面。
--
一級分類:Mathematics 數(shù)學(xué)
二級分類:Statistics Theory 統(tǒng)計理論
分類描述:Applied, computational and theoretical statistics: e.g. statistical inference, regression, time series, multivariate analysis, data analysis, Markov chain Monte Carlo, design of experiments, case studies
應(yīng)用統(tǒng)計、計算統(tǒng)計和理論統(tǒng)計:例如統(tǒng)計推斷、回歸、時間序列、多元分析、數(shù)據(jù)分析、馬爾可夫鏈蒙特卡羅、實驗設(shè)計、案例研究
--
一級分類:Statistics 統(tǒng)計學(xué)
二級分類:Statistics Theory 統(tǒng)計理論
分類描述:stat.TH is an alias for math.ST. Asymptotics, Bayesian Inference, Decision Theory, Estimation, Foundations, Inference, Testing.
Stat.Th是Math.St的別名。漸近,貝葉斯推論,決策理論,估計,基礎(chǔ),推論,檢驗。
--
---
英文摘要:
The ill-posedness of the inverse problem of recovering a regression function in a nonparametric instrumental variable model leads to estimators that may suffer from a very slow, logarithmic rate of convergence. In this paper, we show that restricting the problem to models with monotone regression functions and monotone instruments significantly weakens the ill-posedness of the problem. In stark contrast to the existing literature, the presence of a monotone instrument implies boundedness of our measure of ill-posedness when restricted to the space of monotone functions. Based on this result we derive a novel non-asymptotic error bound for the constrained estimator that imposes monotonicity of the regression function. For a given sample size, the bound is independent of the degree of ill-posedness as long as the regression function is not too steep. As an implication, the bound allows us to show that the constrained estimator converges at a fast, polynomial rate, independently of the degree of ill-posedness, in a large, but slowly shrinking neighborhood of constant functions. Our simulation study demonstrates significant finite-sample performance gains from imposing monotonicity even when the regression function is rather far from being a constant. We apply the constrained estimator to the problem of estimating gasoline demand functions from U.S. data.
---
PDF鏈接:
https://arxiv.org/pdf/1507.05270