摘要翻譯:
在縱向和空間研究中,觀測(cè)結(jié)果往往顯示出在時(shí)間或距離上靜止的強(qiáng)相關(guān)性,這些數(shù)據(jù)被采樣的時(shí)間或位置可能不是均勻的。我們提出了一個(gè)非參數(shù)估計(jì)的相關(guān)函數(shù)在這樣的數(shù)據(jù),使用核方法。當(dāng)被攝體數(shù)目固定且每個(gè)被攝體中的向量或函數(shù)數(shù)目為無窮大時(shí),我們給出了所提估計(jì)量的逐點(diǎn)漸近正態(tài)分布;跐u近理論,我們提出了一種加權(quán)分塊自舉方法來推斷相關(guān)函數(shù),其中權(quán)值考慮了時(shí)間或位置分布的不均勻性。將該方法應(yīng)用于結(jié)腸癌發(fā)生研究中的一個(gè)數(shù)據(jù)集,在實(shí)驗(yàn)中,從12只大鼠的每一個(gè)結(jié)腸節(jié)段中提取結(jié)腸隱窩,然后測(cè)量每個(gè)隱窩中的細(xì)胞周期重要蛋白p27的表達(dá)水平。仿真結(jié)果也說明了該方法的數(shù)值性能。
---
英文標(biāo)題:
《Nonparametric estimation of correlation functions in longitudinal and
spatial data, with application to colon carcinogenesis experiments》
---
作者:
Yehua Li, Naisyin Wang, Meeyoung Hong, Nancy D. Turner, Joanne R.
Lupton, Raymond J. Carroll
---
最新提交年份:
2007
---
分類信息:
一級(jí)分類:Mathematics 數(shù)學(xué)
二級(jí)分類:Statistics Theory 統(tǒng)計(jì)理論
分類描述:Applied, computational and theoretical statistics: e.g. statistical inference, regression, time series, multivariate analysis, data analysis, Markov chain Monte Carlo, design of experiments, case studies
應(yīng)用統(tǒng)計(jì)、計(jì)算統(tǒng)計(jì)和理論統(tǒng)計(jì):例如統(tǒng)計(jì)推斷、回歸、時(shí)間序列、多元分析、數(shù)據(jù)分析、馬爾可夫鏈蒙特卡羅、實(shí)驗(yàn)設(shè)計(jì)、案例研究
--
一級(jí)分類:Statistics 統(tǒng)計(jì)學(xué)
二級(jí)分類:Statistics Theory 統(tǒng)計(jì)理論
分類描述:stat.TH is an alias for math.ST. Asymptotics, Bayesian Inference, Decision Theory, Estimation, Foundations, Inference, Testing.
Stat.Th是Math.St的別名。漸近,貝葉斯推論,決策理論,估計(jì),基礎(chǔ),推論,檢驗(yàn)。
--
---
英文摘要:
In longitudinal and spatial studies, observations often demonstrate strong correlations that are stationary in time or distance lags, and the times or locations of these data being sampled may not be homogeneous. We propose a nonparametric estimator of the correlation function in such data, using kernel methods. We develop a pointwise asymptotic normal distribution for the proposed estimator, when the number of subjects is fixed and the number of vectors or functions within each subject goes to infinity. Based on the asymptotic theory, we propose a weighted block bootstrapping method for making inferences about the correlation function, where the weights account for the inhomogeneity of the distribution of the times or locations. The method is applied to a data set from a colon carcinogenesis study, in which colonic crypts were sampled from a piece of colon segment from each of the 12 rats in the experiment and the expression level of p27, an important cell cycle protein, was then measured for each cell within the sampled crypts. A simulation study is also provided to illustrate the numerical performance of the proposed method.
---
PDF鏈接:
https://arxiv.org/pdf/710.3638