五月天婷亚洲天久久综合网,婷婷丁香五月激情亚洲综合,久久男人精品女人,麻豆91在线播放

  • <center id="8gusu"></center><rt id="8gusu"></rt>
    <menu id="8gusu"><small id="8gusu"></small></menu>
  • <dd id="8gusu"><s id="8gusu"></s></dd>
    樓主: wqf_cufe
    4159 8

    [書籍介紹] MIT超經(jīng)典Introduction of Probability and Statistics講義 [推廣有獎]

    • 4關(guān)注
    • 16粉絲

    教授

    89%

    還不是VIP/貴賓

    -

    威望
    0
    論壇幣
    4264 個
    通用積分
    6.2000
    學(xué)術(shù)水平
    10 點(diǎn)
    熱心指數(shù)
    17 點(diǎn)
    信用等級
    13 點(diǎn)
    經(jīng)驗
    568 點(diǎn)
    帖子
    731
    精華
    0
    在線時間
    2236 小時
    注冊時間
    2009-5-26
    最后登錄
    2021-12-29

    樓主
    wqf_cufe 發(fā)表于 2012-10-27 11:02:43 |只看作者 |壇友微信交流群|倒序 |AI寫論文
    相似文件 換一批

    +2 論壇幣
    k人 參與回答

    經(jīng)管之家送您一份

    應(yīng)屆畢業(yè)生專屬福利!

    求職就業(yè)群
    趙安豆老師微信:zhaoandou666

    經(jīng)管之家聯(lián)合CDA

    送您一個全額獎學(xué)金名額~ !

    感謝您參與論壇問題回答

    經(jīng)管之家送您兩個論壇幣!

    +2 論壇幣
    MIT超經(jīng)典Introduction of Probability and Statistics講義,高清,首發(fā),非常有用!可以學(xué)習(xí)借鑒一下~

    MIT INTRODUCTION TO PROBABILITY AND STATISTICS.zip (3.28 MB, 需要: 20 個論壇幣)
    二維碼

    掃碼加我 拉你入群

    請注明:姓名-公司-職位

    以便審核進(jìn)群資格,未注明則拒絕

    關(guān)鍵詞:introduction Probability troduction Statistics statistic 經(jīng)典

    已有 1 人評分經(jīng)驗 論壇幣 收起 理由
    webgu + 100 + 100 熱心幫助其他會員

    總評分: 經(jīng)驗 + 100  論壇幣 + 100   查看全部評分

    本帖被以下文庫推薦

    沙發(fā)
    ttklkl 發(fā)表于 2012-10-27 20:32:47 |只看作者 |壇友微信交流群
    說下什么內(nèi)容,列個目錄也行啊,20個論壇幣?
    Stay Hungry. Stay Foolish.
    藤椅
    mulizhu 發(fā)表于 2012-10-27 21:58:00 |只看作者 |壇友微信交流群
      謝謝樓主   還希望樓主多多分享呀
    板凳
    iavjssssmqee 發(fā)表于 2012-10-28 14:11:08 |只看作者 |壇友微信交流群
    有點(diǎn)貴。
    決定了,心一恒,就不會害怕!!!
    報紙
    maidenhan 發(fā)表于 2012-10-28 14:46:24 |只看作者 |壇友微信交流群
    下來一看,貌似是一本概率論筆記,和大家上學(xué)時自己記的東西差不多。
    沒有目錄,下面展示了第一章(希望樓主不要介意):

    18.05 Spring 2005 Lecture Notes
    18.05 Lecture 1 February 2, 2005
    Required Textbook -DeGroot & Schervish, “Probability and Statistics,” Third Edition Recommended Introduction to Probability Text -Feller, Vol. 1
    §1.2-1.4. Probability, Set Operations.
    What is probability?

    Classical Interpretation: all outcomes have equal probability (coin, dice)

    Subjective Interpretation (nature of problem): uses a model, randomness involved (such as weather)
    – ex. drop of paint falls into a glass of water, model can describe P(hit bottom before sides) – or, P(survival after surgery)-“subjective,” estimated by the doctor.

    Frequency Interpretation: probability based on history
    – P(make a free shot) is based on history of shots made.
    Experiment ↔has a random outcome.
    1.
    Sample Space -set of all possible outcomes. coin: S={H, T}, die: S={1, 2, 3, 4, 5,6}two dice: S={(i, j), i, j=1, 2, ..., 6}
    2.
    Events -any subset of sample space ex. A √S, A-collection of all events.
    3.
    Probability Distribution -P: A↔[0, 1] Event A √S, P(A) or Pr(A) -probability of A
    Properties of Probability:
    1.
    0 ←P(A) ←1
    2.
    P(S) = 1
    3.
    For disjoint (mutually exclusive) events A, B (definition ↔A ∞B=
    ≥)
    P(A or B) = P(A) + P(B) -this can be written for any number of events. For a sequence of events A1, ..., An, ... all disjoint (Ai ∞Aj = ≥, i = j):

    ∗�∗�
    P(
    Ai) =
    P(Ai)
    i=1 i=1
    which is called “countably additive.”
    If continuous, can’t talk about P(outcome), need to consider P(set)
    Example: S= [0,1],0 <a<b<1.
    P([a,b]) = b−a,P(a) = P(b) = 0.
    1
    Need to group outcomes, not sum up individual points since they all have P = 0.
    §1.3 Events, Set Operations
    Union of Sets: A⇒ B= {s⊂ S: s⊂ Aor s⊂ B
    }
    Intersection: A∞ B= AB= {s⊂ S: s⊂ Aand s⊂ B
    }
    c
    Complement: A= {s⊂ S: s/
    ⊂ A
    }
    Set Difference: A\ B= A− B= {s⊂ S: s⊂ Aand s/
    ⊂ B} = A∞ B
    2
    c
    c
    Symmetric Difference: (A∞ Bc) ⇒ (B∞ A)
    Summary of Set Operations:
    1. Union of Sets: A⇒ B= {s⊂ S: s⊂ Aor s⊂ B
    }
    2.
    Intersection: A∞ B= AB= {s⊂ S: s⊂ Aand s⊂ B
    3.
    Complement: Ac = {s⊂ S: s/}
    ⊂ A
    } c
    4. Set Difference: A\ B= A− B= {s⊂ S: s⊂ Aand s/
    ⊂ B} = A∞ B
    5. Symmetric Difference:
    A⇔B= {s⊂ S: (s⊂ Aand s/) or (s⊂ Band s/
    ⊂ B⊂ A)} =
    c)
    (A∞ Bc) ⇒ (B∞ A
    Properties of Set Operations:
    1. AB= BA
    ⇒⇒
    2. (A⇒ B) ⇒ C= A⇒ (BC)

    Note that 1. and 2. are also valid for intersections.
    3.
    For mixed operations, associativity matters:
    (A⇒ B) ∞ C= (A∞ C) ⇒ (B∞ C)
    think of union as addition and intersection as multiplication: (A+B)C = AC + BC
    c
    4.
    (A⇒ B)c = A∞ Bc -Can be proven by diagram below:
    Both diagrams give the same shaded area of intersection.
    c
    5.
    (A∞ B)c = ABc -Prove by looking at a particular point:

    s⊂ (A∞ B)c = s/
    ⊂ (A∞ B)
    cc
    ⊂ Aor s/s/⊂ B= s⊂ Aor s⊂ Bs⊂ (A
    c Bc)

    QED
    ** End of Lecture 1
    地板
    cuzntone 發(fā)表于 2012-10-29 04:53:15 |只看作者 |壇友微信交流群
    頂 概率是基礎(chǔ)。 有點(diǎn)貴撒
    以前上概率課的時候覺得作業(yè)多又難,現(xiàn)在覺得是必須的
    7
    gds_1234 發(fā)表于 2013-4-23 14:16:40 |只看作者 |壇友微信交流群
    thanks
    8
    jimylee123 發(fā)表于 2014-12-9 10:50:08 |只看作者 |壇友微信交流群
    資料是好資料,就是太貴了。
    9
    wh7064rg 發(fā)表于 2014-12-10 13:24:16 |只看作者 |壇友微信交流群
    MIT的公開課里應(yīng)該有吧
    您需要登錄后才可以回帖 登錄 | 我要注冊

    本版微信群
    加好友,備注cda
    拉您進(jìn)交流群

    京ICP備16021002-2號 京B2-20170662號 京公網(wǎng)安備 11010802022788號 論壇法律顧問:王進(jìn)律師 知識產(chǎn)權(quán)保護(hù)聲明   免責(zé)及隱私聲明

    GMT+8, 2024-12-29 03:37