五月天婷亚洲天久久综合网,婷婷丁香五月激情亚洲综合,久久男人精品女人,麻豆91在线播放

  • <center id="8gusu"></center><rt id="8gusu"></rt>
    <menu id="8gusu"><small id="8gusu"></small></menu>
  • <dd id="8gusu"><s id="8gusu"></s></dd>
    樓主: wpy7983
    2883 6

    [學(xué)科前沿] Wiley Series in Probability and Statistics:Introduction to Imprecise Probabiliti [推廣有獎(jiǎng)]

    • 2關(guān)注
    • 1粉絲

    博士生

    34%

    還不是VIP/貴賓

    -

    威望
    0 級(jí)
    論壇幣
    7006 個(gè)
    通用積分
    2.0324
    學(xué)術(shù)水平
    8 點(diǎn)
    熱心指數(shù)
    9 點(diǎn)
    信用等級(jí)
    9 點(diǎn)
    經(jīng)驗(yàn)
    26285 點(diǎn)
    帖子
    198
    精華
    0
    在線時(shí)間
    328 小時(shí)
    注冊(cè)時(shí)間
    2008-11-24
    最后登錄
    2024-4-25

    樓主
    wpy7983 發(fā)表于 2014-7-2 12:55:23 |只看作者 |壇友微信交流群|正序 |AI寫論文
    相似文件 換一批

    +2 論壇幣
    k人 參與回答

    經(jīng)管之家送您一份

    應(yīng)屆畢業(yè)生專屬福利!

    求職就業(yè)群
    趙安豆老師微信:zhaoandou666

    經(jīng)管之家聯(lián)合CDA

    送您一個(gè)全額獎(jiǎng)學(xué)金名額~ !

    感謝您參與論壇問題回答

    經(jīng)管之家送您兩個(gè)論壇幣!

    +2 論壇幣
    書名:Introduction to Imprecise Probabilities

    出版社: Wiley-Blackwell  (2014年5月23日)

    叢書名: Wiley Series in Probability and Statistics

    語種: 英語

    ISBN: 0470973811

    條形碼: 9780470973813

    Preface
    Introduction
    Acknowledgements
    Outline of this Book and Guide to Readers
    Contributors
    1 Desirability
    1.1 Introduction
    1.2 Reasoning about and with Sets of Desirable Gambles
    1.2.1 Rationality Criteria
    1.2.2 Assessments Avoiding Partial or Sure Loss
    1.2.3 Coherent Sets of Desirable Gambles
    1.2.4 Natural Extension
    1.2.5 Desirability Relative to Subspaces with Arbitrary Vector Orderings
    1.3 Deriving & Combining Sets of Desirable Gambles
    1.3.1 Gamble Space Transformations
    1.3.2 Derived Coherent Sets of Desirable Gambles
    1.3.3 Conditional Sets of Desirable Gambles
    1.3.4 Marginal Sets of Desirable Gambles
    1.3.5 Combining Sets of Desirable Gambles
    1.4 Partial Preference Orders
    1.4.1 Strict Preference
    1.4.2 Nonstrict Preference
    1.4.3 Nonstrict Preferences Implied by Strict Ones
    1.4.4 Strict Preferences Implied by Nonstrict Ones
    1.5 Maximally Committal Sets of Strictly Desirable Gambles
    1.6 Relationships with Other, Nonequivalent Models
    1.6.1 Linear Previsions
    1.6.2 Credal Sets
    1.6.3 To Lower and Upper Previsions
    1.6.4 Simplified Variants of Desirability
    1.6.5 From Lower Previsions
    1.6.6 Conditional Lower Previsions
    1.7 Further Reading
    2 Lower Previsions
    2.1 Introduction
    2.2 Coherent Lower Previsions
    2.2.1 Avoiding Sure Loss and Coherence
    2.2.2 Linear Previsions
    2.2.3 Sets of Desirable Gambles
    2.2.4 Natural Extension
    2.3 Conditional Lower Previsions
    2.3.1 Coherence of a Finite Number of Conditional Lower Previsions
    2.3.2 Natural Extension of Conditional Lower Previsions
    2.3.3 Coherence of an Unconditional and a Conditional Lower Prevision
    2.3.4 Updating with the Regular Extension
    2.4 Further Reading
    2.4.1 The Work of Williams
    2.4.2 The Work of Kuznetsov
    2.4.3 The Work of Weichselberger
    3 Structural Judgements
    3.1 Introduction
    3.2 Irrelevance and Independence
    3.2.1 Epistemic Irrelevance
    3.2.2 Epistemic Independence
    3.2.3 Envelopes of Independent Precise Models
    3.2.4 Strong Independence
    3.2.5 The Formalist Approach to Independence
    3.3 Invariance
    3.3.1 Weak Invariance
    3.3.2 Strong Invariance
    3.4 Exchangeability.
    3.4.1 Representation Theorem for Finite Sequences
    3.4.2 Exchangeable Natural Extension
    3.4.3 Exchangeable Sequences
    3.5 Further Reading
    3.5.1 Independence.
    3.5.2 Invariance
    3.5.3 Exchangeability
    4 Special Cases
    4.1 Introduction
    4.2 Capacities and n-monotonicity
    4.3 2-monotone Capacities
    4.4 Probability Intervals on Singletons
    4.5 1-monotone Capacities
    4.5.1 Constructing 1-monotone Capacities
    4.5.2 Simple Support Functions
    4.5.3 Further Elements
    4.6 Possibility Distributions, p-boxes, Clouds and Related Models.
    4.6.1 Possibility Distributions
    4.6.2 Fuzzy Intervals
    4.6.3 Clouds
    4.6.4 p-boxes.
    4.7 Neighbourhood Models
    4.7.1 Pari-mutuel
    4.7.2 Odds-ratio
    4.7.3 Linear-vacuous
    4.7.4 Relations between Neighbourhood Models
    4.8 Summary
    5 Other Uncertainty Theories Based on Capacities
    5.1 Imprecise Probability = Modal Logic + Probability
    5.1.1 Boolean Possibility Theory and Modal Logic
    5.1.2 A Unifying Framework for Capacity Based Uncertainty Theories
    5.2 From Imprecise Probabilities to Belief Functions and Possibility Theory
    5.2.1 Random Disjunctive Sets
    5.2.2 Numerical Possibility Theory
    5.2.3 Overall Picture
    5.3 Discrepancies between Uncertainty Theories
    5.3.1 Objectivist vs. Subjectivist Standpoints
    5.3.2 Discrepancies in Conditioning
    5.3.3 Discrepancies in Notions of Independence
    5.3.4 Discrepancies in Fusion Operations
    5.4 Further Reading
    6 Game-Theoretic Probability
    6.1 Introduction
    6.2 A Law of Large Numbers
    6.3 A General Forecasting Protocol
    6.4 The Axiom of Continuity
    6.5 Doob's Argument
    6.6 Limit Theorems of Probability
    6.7 Levy's Zero-One Law.
    6.8 The Axiom of Continuity Revisited
    6.9 Further Reading
    7 Statistical Inference
    7.1 Background and Introduction
    7.1.1 What is Statistical Inference?
    7.1.2 (Parametric) Statistical Models and i.i.d. Samples
    7.1.3 Basic Tasks and Procedures of Statistical Inference
    7.1.4 Some Methodological Distinctions
    7.1.5 Examples: Multinomial and Normal Distribution
    7.2 Imprecision in Statistics, some General Sources and Motives
    7.2.1 Model and Data Imprecision; Sensitivity Analysis and Ontological Views on Imprecision
    7.2.2 The Robustness Shock, Sensitivity Analysis
    7.2.3 Imprecision as a Modelling Tool to Express the Quality of Partial Knowledge
    7.2.4 The Law of Decreasing Credibility
    7.2.5 Imprecise Sampling Models: Typical Models and Motives
    7.3 Some Basic Concepts of Statistical Models Relying on Imprecise Probabilities
    7.3.1 Most Common Classes of Models and Notation
    7.3.2 Imprecise Parametric Statistical Models and Corresponding i.i.d. Samples.
    7.4 Generalized Bayesian Inference
    7.4.1 Some Selected Results from Traditional Bayesian Statistics.
    7.4.2 Sets of Precise Prior Distributions, Robust Bayesian Inference and the Generalized Bayes Rule
    7.4.3 A Closer Exemplary Look at a Popular Class of Models: The IDM and Other Models Based on Sets of Conjugate Priors in Exponential Families.
    7.4.4 Some Further Comments and a Brief Look at Other Models for Generalized Bayesian Inference
    7.5 Frequentist Statistics with Imprecise Probabilities
    7.5.1 The Non-robustness of Classical Frequentist Methods.
    7.5.2 (Frequentist) Hypothesis Testing under Imprecise Probability: Huber-Strassen Theory and Extensions
    7.5.3 Towards a Frequentist Estimation Theory under Imprecise Probabilities-- Some Basic Criteria and First Results
    7.5.4 A Brief Outlook on Frequentist Methods
    7.6 Nonparametric Predictive Inference (NPI)
    7.6.1 Overview
    7.6.2 Applications and Challenges
    7.7 A Brief Sketch of Some Further Approaches and Aspects
    7.8 Data Imprecision, Partial Identification
    7.8.1 Data Imprecision
    7.8.2 Cautious Data Completion
    7.8.3 Partial Identification and Observationally Equivalent Models
    7.8.4 A Brief Outlook on Some Further Aspects
    7.9 Some General Further Reading
    7.10 Some General Challenges
    8 Decision Making
    8.1 Non-Sequential Decision Problems
    8.1.1 Choosing From a Set of Gambles
    8.1.2 Choice Functions for Coherent Lower Previsions
    8.2 Sequential Decision Problems
    8.2.1 Static Sequential Solutions: Normal Form
    8.2.2 Dynamic Sequential Solutions: Extensive Form
    8.3 Examples and Applications
    8.3.1 Ellsberg's Paradox
    8.3.2 Robust Bayesian Statistics
    9 Probabilistic Graphical Models
    9.1 Introduction
    9.2 Credal Sets
    9.2.1 Definition and Relation with Lower Previsions
    9.2.2 Marginalisation and Conditioning
    9.2.3 Composition.
    9.3 Independence
    9.4 Credal Networks
    9.4.1 Non-Separately Specified Credal Networks
    9.5 Computing with Credal Networks
    9.5.1 Credal Networks Updating
    9.5.2 Modelling and Updating with Missing Data
    9.5.3 Algorithms for Credal Networks Updating
    9.5.4 Inference on Credal Networks as a Multilinear Programming Task
    9.6 Further Reading
    10 Classification
    10.1 Introduction
    10.2 Naive Bayes
    10.3 Naive Credal Classifier (NCC)
    10.4 Extensions and Developments of the Naive Credal Classifier
    10.4.1 Lazy Naive Credal Classifier
    10.4.2 Credal Model Averaging
    10.4.3 Profile-likelihood Classifiers
    10.4.4 Tree-Augmented Networks (TAN)
    10.5 Tree-based Credal Classifiers
    10.5.1 Uncertainty Measures on Credal Sets. The Maximum Entropy Function.
    10.5.2 Obtaining Conditional Probability Intervals with the Imprecise Dirichlet Model
    10.5.3 Classification Procedure
    10.6 Metrics, Experiments and Software
    10.6.1 Software.
    10.6.2 Experiments.
    11 Stochastic Processes
    11.1 The Classical Characterization of Stochastic Processes
    11.1.1 Basic Definitions
    11.1.2 Precise Markov Chains
    11.2 Event-driven Random Processes
    11.3 Imprecise Markov Chains
    11.3.1 From Precise to Imprecise Markov Chains
    11.3.2 Imprecise Markov Models under Epistemic Irrelevance.
    11.3.3 Imprecise Markov Models Under Strong Independence.
    11.3.4 When Does the Interpretation of Independence (not) Matter?
    11.4 Limit Behaviour of Imprecise Markov Chains
    11.4.1 Metric Properties of Imprecise Probability Models
    11.4.2 The Perron-Frobenius Theorem
    11.4.3 Invariant Distributions
    11.4.4 Coefficients of Ergodicity
    11.4.5 Coefficients of Ergodicity for Imprecise Markov Chains.
    11.5 Further Reading
    12 Financial Risk Measurement
    12.1 Introduction
    12.2 Imprecise Previsions and Betting
    12.3 Imprecise Previsions and Risk Measurement
    12.3.1 Risk Measures as Imprecise Previsions
    12.3.2 Coherent Risk Measures
    12.3.3 Convex Risk Measures (and Previsions)
    12.4 Further Reading
    13 Engineering
    13.1 Introduction
    13.2 Probabilistic Dimensioning in a Simple Example
    13.3 Random Set Modelling of the Output Variability
    13.4 Sensitivity Analysis
    13.5 Hybrid Models.
    13.6 Reliability Analysis and Decision Making in Engineering
    13.7 Further Reading
    14 Reliability and Risk
    14.1 Introduction
    14.2 Stress-strength Reliability
    14.3 Statistical Inference in Reliability and Risk
    14.4 NPI in Reliablity and Risk
    14.5 Discussion and Research Challenges
    15 Elicitation
    15.1 Methods and Issues
    15.2 Evaluating Imprecise Probability Judgements
    15.3 Factors Affecting Elicitation
    15.4 Further Reading
    16 Computation
    16.1 Introduction
    16.2 Natural Extension
    16.2.1 Conditional Lower Previsions with Arbitrary Domains.
    16.2.2 The Walley-Pelessoni-Vicig Algorithm
    16.2.3 Choquet Integration
    16.2.4 Mobius Inverse
    16.2.5 Linear-Vacuous Mixture
    16.3 Decision Making
    16.3.1 Maximin, Maximax, and Hurwicz
    16.3.2 Maximality
    16.3.3 E-Admissibility
    16.3.4 Interval Dominance
    References
    Author index
    Subject index
    二維碼

    掃碼加我 拉你入群

    請(qǐng)注明:姓名-公司-職位

    以便審核進(jìn)群資格,未注明則拒絕

    關(guān)鍵詞:introduction Probability Statistics troduction statistic Series 條形碼 出版社 about 英語

    Introduction to Imprecise Probabilities-Wiley (2014).pdf

    2.41 MB

    需要: 12 個(gè)論壇幣  [購買]

    本帖被以下文庫推薦

    7
    tianwk 發(fā)表于 2020-3-16 11:45:29 |只看作者 |壇友微信交流群
    thanks for sharing
    地板
    tianwk 發(fā)表于 2020-3-16 10:52:42 |只看作者 |壇友微信交流群
    thanks for sharing
    報(bào)紙
    atwoodcloyd 在職認(rèn)證  發(fā)表于 2018-12-9 21:39:49 |只看作者 |壇友微信交流群
    很新穎的介紹視角,感謝分享!
    板凳
    bailihongchen 發(fā)表于 2014-12-15 10:21:25 |只看作者 |壇友微信交流群
    看一看,學(xué)習(xí)一下
    藤椅
    遙望者 發(fā)表于 2014-9-11 23:20:06 |只看作者 |壇友微信交流群
    這么多
    沙發(fā)
    kexinkeqing 發(fā)表于 2014-7-7 08:13:29 |只看作者 |壇友微信交流群
    kankan

    本版微信群
    加好友,備注jltj
    拉您入交流群

    京ICP備16021002-2號(hào) 京B2-20170662號(hào) 京公網(wǎng)安備 11010802022788號(hào) 論壇法律顧問:王進(jìn)律師 知識(shí)產(chǎn)權(quán)保護(hù)聲明   免責(zé)及隱私聲明

    GMT+8, 2024-12-28 12:30