辛切克·阿科斯(ω;pT)-Acos(ω)k≤p∞`=pT+1ka`k+k Acos(ω;pT)-Acos(ω;通過引理B.9和假設(shè)B.3(同樣用sin代替cos)得到k∑-∑k=Op(t-1/2),由于k∑-∑k=Op(t-1/2)通過引理B.4得到z2πrt(ω)dω=Op(pT/t),利用h(·)的連續(xù)性和有界性,我們得到了ρ(pT)-ρ=z2πh(ω)g(Acos(ω),Asin(ω),∑)vec(Acos(ω);pT)-Acos(ω))dω+z2πh(ω)g(Acos(ω),Asin(ω),∑)vec(Asin(ω);pT)-Asin(ω))Dω+Z2πH(ω)g(Acos(ω),Asin(ω),∑)vec(∑-∑)Dω+Op(pT/t)=Z2πH(ω)g(Acos(ω),Asin(ω),∑)vec(Acos(ω);pT)-Acos(ω;pT))Dω+Z2πH(ω)g(Acos(ω),Asin(ω),∑)vec(Asin(ω);pT)-Asin(ω;pT))dω+z2πh(ω)g(Acos(ω),Asin(ω),∑)vec(Acos(ω);pT)-Acos(ω))dω(b.24)+z2πh(ω)g(Acos(ω),Asin(ω),∑)vec(Asin(ω);pT)-Asin(ω))dω(b.25)+ζvec(∑-∑)+Op(pT/t)。我們現(xiàn)在對非參數(shù)偏置項(b.24)進(jìn)行了約束;(b.25)的論點類似,注意h(·)是有界的,和z2πkg(Acos(ω),Asin(ω),∑)vec(Acos(ω);pT)-Acos(ω))k dω≤z2πkg(Acos(ω),Asin(ω),∑)k dω×supω∈[0,2π]kacos(ω;pT)-Acos(ω)k≤z2πkg(Acos(ω),Asin(ω),∑)k dω×∞x`=pT+1ka`k=o(t-1/2),通過假設(shè)B.3。我們還使用了假設(shè)B.2在L(0,2π)中包含ω7→kg(Acos(ω),Asin(ω),∑)kis,暗示這個函數(shù)是可積的。因此,項(b.24)-(b.25)是每個o(t-1/2)。為了完成證明,觀察2πh(ω)g(Acos(ω),Asin(ω),∑)vec(Acos(ω);pT)-Acos(ω;pT))Dω+Z2πH(ω)g(Acos(ω),Asin(ω),∑)vec(Asin(ω);pT)-Asin(ω;pT))dω=z2πh(ω)g(Acos(ω),Asin(ω),∑)ptx`=1vec(a`-a\')cos(ω)dω+z2πh(ω)g(Acos(ω),Asin(ω),∑)ptx`=1vec(a`-a\')sin(ω\')dω=ptx`=1vec`Tvec(a`-a\')dω=ptx`=1vec`Tvec(a`-a\')dω=ptx`=1vec`Tvec(β(pT)-β(pT))+ζvec(∑-∑)+o(t-1/2)+Op(pT/T)。以上余項均為1/2)通過假設(shè)B.3.B.9.15對命題B.4的證明,如果我們能證明kütki是漸近有界的,則命題立即從引理B.8和B.11得到。設(shè)gj,i(·,·,·)表示gj(·,·,·)的第i個元素,j=1,2,i=1,2,。...西北。設(shè)Msupω∈[0,2π]h(ω)<∞。thenk'Atk=nwxi=1ptx`=1z2πh(ω)g1,i(Acos(ω),Asin(ω),∑)cos(ω)+g2,i(Acos(ω),Asin(ω),∑)sin(ω)dω≤2mnwxi=1ptx`=1z2πg(shù)1,i(Acos(ω),Asin(ω),∑)cos(ω)dω+z2πg(shù)2,i(Acos(ω),Asin(ω),∑)sin(ω)dω。sumptx`=12πz2πg(shù)1,i(Acos(ω),Asin(ω),∑)sin(ω)dω),∑)cos(ω`)dω(b.26)等于函數(shù)ω7→g1,i(Acos(ω),Asin(ω),∑)在正交函數(shù)空間{ω7→cos(ω`)}1≤`≤pt上投影的L(0,2π)范數(shù)。Bessel不等式指出(B.26)是以函數(shù)ω7→G1,i(Acos(ω),Asin(ω),∑)的平方L(0,2π)范數(shù)為界的。類似地,我們可以用g2,i(·,·,·)代替g1,i(·,·,·)和用sin(ω`)代替cos(ω`)來約束表達(dá)式(B.26)。因此,kütk≤8πmpnwi=1kg1,i(Acos(·),Asin(·),∑)kL(0,2π)+kg2,i(Acos(·),Asin(·),∑)kL(0,2π),用明顯的符號表示L范數(shù)。這些范數(shù)是由假設(shè)B.2.B.9.16命題B.5的證明而成的,我們從證明küt-'Atk=op(1)和kζ(pT)-ζk=op(1)開始。根據(jù)引理B.10和假設(shè)B.2中的兩次連續(xù)可測性,存在一個常數(shù)C<∞,使得當(dāng)概率接近1時,kgj(Acos(ω;pT),Asin(ω;pT),∑)-gj(Acos(ω),Asin(ω),∑)k≤ck Acos(ω;pT)-Acos(ω)k+k Asin(ω;pT)-Asin(ω)k+k∑(pT)-∑k,對于j=1,2,3。根據(jù)引理B.4和I.I.D.中心極限定理,我們有k∑(pT)-∑k=op(t-1/2)。例如,利用引理B.9,我們得到:ptx`=1z2πh(ω)hg(Acos(ω),Asin(ω),∑)-g(Acos(ω),Asin(ω),∑)icos(ω`)dω≤~cptsupω∈[0,2π]k Acos(ω;pT)-Acos(ω)k+k Asin(ω;pT)-Asin(ω)k+k∑-∑(pT)k=Op((pT/t)1/2)=Op(1),其中~c是某個常數(shù)。這種類型的計算意味著kct^avtk=op(1)和kζ(pT)-ζk=op(1)。我們現(xiàn)在一次一個地處理σψ(pT)中這兩項的一致性。
|